caBIG

Software Design Description


[The objective of the Software Design Description (SDD) is to describe the design of the requirements. It describes the design decisions, architectural design, and the detailed design needed to implement the software. The SDD is used as the basis for implementing the software. It provides the acquirer visibility into the design and provides information needed for software support.

SDD Template Instructions:

Throughout this template there will be many italicized text areas surrounded in brackets '[]', similar to these instructions.  These areas either prompt for user entry or provide instructions for the section.  Once completed, these bracketed text areas must be deleted.  

If any section within this template technically does not apply for the project that section can be omitted from this document. Other areas in regular text are standard verbiage and should not require modifications.]

[Insert project name/task number]

Software Design Description

Version 1.0
[Insert approval date of document]

Document Change Record

	Version Number
	Date 
	Description

	1.0
	[insert approval date of document]
	Initial document

	
	
	


TABLE OF CONTENTS

11.
Introduction

2.
System Architecture
3
3.
Components
6
3.1
[Name of application component]
6
4.
[Notes]
8
Appendix A – acronym List
9
[Appendix B – Forms and Templates]
10
[APPENDIX C – DATABASE]
11
[Appendix D – Other Appendix]
16


1. Introduction

The Software Design Description (SDD) describes the design decisions, architectural design, and the detailed design needed to implement the software. The SDD is used as the basis for implementing the software. It provides the acquirer visibility into the design and provides information needed for software support.  

This document will provide instruction and strategy for documenting the design of requirements. The SDD is used as the basis for implementing the software.

This document must include or reference requirements traceability.

Requirements Traceability

· Design to Requirements Traceability – Refer to the project's RTM or insert traceability from each design element identified in this plan to the requirements and, if applicable, software system requirements it addresses.

[Project Background - Insert project background/description and/or any specific policies, procedures.]
[Identification - Insert a full identification of the system and the software to which this document applies, including, as applicable, identification number(s), title(s), abbreviation(s), version number(s), and release number(s).]
[System Overview - Insert a brief purpose of the system and the software to which this document applies. Describe the general nature of the system and software; summarize the history of system development, operation, and maintenance; identify the project sponsor, acquirer, user, developer, and support agencies; identify current and planned operating sites; and list other relevant documents.]

[Document Overview - This Software Design Description defines the strategies necessary to accomplish the design activities associated with [Insert project name].  Design related procedural instructions are included in the Standard Operating Procedures (SOPs). Insert additional summary of the purpose and contents of this document and describe any security or privacy considerations associated with its use.  Insert any project specific comments and the type of development.  The remaining Software Design Description sections are organized as follows:

· Section 2. System Architecture: Describes and overview of the system, the conceptual and architectural design, interfaces and the various environments that will be used throughout the development lifecycle.

· Section 3. Components: Identifies and describes each component broken down into its parts that are described in detail. 
· [Section 4. Notes: Contains general information that aids in the understanding of this document.]
· Appendix A. Acronym List: Defines the acronyms to be used on the project.

· [Appendix B. Forms and Templates: Contains the forms and templates that will be used on the project.]
· [Appendix C. Database: Describes database-wide design decisions about the database's behavioral design and other decisions affecting further design of the database broken down into its parts that are described in detail.]

· [Appendix D. Other appendices: Provides any additional information published separately for convenience in document maintenance.]]

[Reference documents - Refer to the HST Software Engineering Handbook for additional information.  For additional project specific information, refer to the following documents:

· [Project Name]'s Software Development Plan (SDP)

· [Project Name]'s Configuration Management (SCM) Plan

· Add any additional relationships, if any, of the Software Design Description to related project management plans.

The following Standard Operating Procedures for design will be used on this project and are referenced in this document.

· List any project specific SOPs]
2. System Architecture

[This section shall be divided into paragraphs as needed to present unit-wide design decisions.]

[System Architecture Overview - Explain the high-level concept of the system.  Summarize the system context and system design, with diagrams if available.  This section shall present unit-wide design decisions, that is, decisions about the requirement's behavioral design (how it will behave, from a user's point of view, in meeting its requirements, ignoring internal implementation) and other decisions affecting the selection and design of the software units that make up the requirement. If all such decisions are explicit in the Requirements or are deferred to the design of the requirement's software units, this section shall so state. Design decisions that respond to requirements designated critical, such as those for safety, security, or privacy, shall be placed in separate subparagraphs. If a design decision depends upon system states or modes, this dependency shall be indicated. Design conventions needed to understand the design should be presented or referenced. Examples of requirement-wide design decisions are the following: 

· Design decisions on requirement behavior in response to each input or condition, including actions the requirement will perform, response times and other performance characteristics, description of physical systems modeled, selected equations/algorithms/rules, and handling of unallowed inputs or conditions.  

· Other requirement-wide design decisions made in response to requirements, such as selected approach to providing required flexibility, availability, and maintainability.]

[Architectural Design - Show the components and the control and data flow between them.  This can be part diagram and part textual - longer material can be put in an appendix.  This section shall describe the requirement architectural design. If part or all of the design depends upon system states or modes, this dependency shall be indicated. If design information falls into more than one paragraph, it may be presented once and referenced from the other paragraphs. Design conventions needed to understand the design should be presented or referenced. This paragraph shall: 

· Identify the software units that make up the software unit. Each software unit shall be assigned a project-unique identifier.  Note: A software unit is an element in the design of a requirement; for example, a major subdivision of a requirement, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities. A database may be treated as a requirement or as a software unit. The SDD may refer to software units by any name(s) consistent with the design methodology being used. 

· Show the static (such as "consists of") relationship(s) of the software units. Multiple relationships may be presented, depending on the selected software design methodology (for example, in an object-oriented design, this paragraph may present the class and object structures as well as the module and process architectures of the requirement). 

· State the purpose of each software unit and identify the Requirements and unit-wide design decisions allocated to it. (Alternatively, the allocation of requirements may be provided in 6.a.) 

· Identify each software unit's development status/type (such as new development, existing design or software to be reused as is, existing design or software to be reengineered, software to be developed for reuse, software planned for Build N, etc.) For existing design or software, the description shall provide identifying information, such as name, version, documentation references, library, etc. 

· Describe the requirement's (and as applicable, each software unit's) planned utilization of computer hardware resources (such as processor capacity, memory capacity, input/output device capacity, auxiliary storage capacity, and communications/network equipment capacity). The description shall cover all computer hardware resources included in resource utilization requirements for the requirement, in system-level resource allocations affecting the requirement, and in resource utilization measurement planning in the Software Development Plan. If all utilization data for a given computer hardware resource are presented in a single location, such as in one SDD, this paragraph may reference that source. Included for each computer hardware resource shall be: 

· The Requirements or system-level resource allocations being satisfied 

· The assumptions and conditions on which the utilization data are based (for example, typical usage, worst-case usage, assumption of certain events) 

· Any special considerations affecting the utilization (such as use of virtual memory, overlays, or multiprocessors or the impacts of operating system overhead, library software, or other implementation overhead)  

· The units of measure used (such as percentage of processor capacity, cycles per second, bytes of memory, kilobytes per second) 

· The level(s) at which the estimates or measures will be made (such as software unit, requirement, or executable program)

· Identify the program library in which the software that implements each software unit is to be placed.]

[Interfaces - This paragraph shall be divided into the following subparagraphs to describe the interface characteristics of the software units. It shall include both interfaces among the software units and their interfaces with external entities such as systems, configuration items, and users.

The paragraphs below shall state the project-unique identifier assigned to each interface and shall identify the interfacing entities (software units, systems, configuration items, users, etc.) by name, number, version, and documentation references, as applicable. The identification shall state which entities have fixed interface characteristics (and therefore impose interface requirements on interfacing entities) and which are being developed or modified (thus having interface requirements imposed on them). One or more interface diagrams shall be provided, as appropriate, to depict the interfaces.

Design decisions regarding inputs the unit will accept and outputs it will produce, including interfaces with other systems, hardware, and users.
· External Software Interfaces - Insert text regarding any external interfaces with the software.
· Software System Interfaces - Insert text regarding software interfaces to other software systems.
· Software System Components Interfaces - Insert text regarding software interfaces to other software system components.
· Hardware Interfaces - Insert text regarding any external interfaces with the hardware.]

[Database Design - Reference the Database Design if applicable.]

[System Security - Insert the high level approach to meeting safety, security, and privacy requirements.

· Network Level - Insert the selected approach to meeting safety, security, and privacy requirements at the network level.

· Database Level - Insert the selected approach to meeting safety, security, and privacy requirements at the database level.

· Application Level - Insert the selected approach to meeting safety, security, and privacy requirements at the application level.]

3. Components

[This section shall describe each software unit of the requirement. If part of all of the design depends upon system states or modes, this dependency shall be indicated. If design information falls into more than one paragraph, it may be presented once and referenced from the other paragraphs. Design conventions needed to understand the design should be presented or referenced. Software units that are databases, or that are used to access or manipulate databases, are described in Appendix C. Reference the Database Design if applicable.
This is a reference for the programmer to consult.  Each component will be broken down here into its parts that are described in detail.  Diagrams should be included here.  Use an appropriate naming convention for parts of a component. Structure this section according to the system design.  ID number or requirements number may name components.   Document detailed design information.   
Section 3.1 will be repeated for each application component.  The first component will be Section 3.1; the second component will be section 3.2 etc.  Each site description will follow the same outline as indicated in section 3.1]

3.1 [Name of application component]

[This paragraph shall identify a requirement by a project-unique identifier and shall describe the unit. The description shall include the following information, as applicable. Alternatively, this paragraph may designate a group of requirements and identify and describe the requirements in subparagraphs. Requirements that contain other requirements may reference the descriptions of those requirements rather than repeating information.

Give the name of the component.  The names should be related to the major component of which they are part.  Describe each high level component. The main information given below relates to the 'external' aspects of the components that are used to specify it as a black box.  Some of the items listed below may not be relevant - if so you can omit them but preserve the order given.  Structure this section according to the design.]

[Type - State whether the component is a module, a file, a program etc.]
[Purpose - Insert the purpose of the component, tracing it to the software requirements.]
[Function - Describe what the component does.]
[Subordinate - List the immediate children.]
[Dependencies - Describe any constraints, limitations, or unusual features in the design of the software unit.]
[Preconditions  - Describe any preconditions for using the component.]
[Interfaces - Define the control and data flow to and from the component. If the software unit contains, receives, or outputs data, a description of its inputs, outputs, and other data elements and data element assemblies, as applicable. Data local to the software unit shall be described separately from data input to or output from the software unit.]
[Graphics- Include screenshots where appropriate to show how a screen or graphic will look.]
[Resources - List the resources required, such as displays and printers.]
[References - Give references of any documents needed to understand the component.]
[Processing - Describe the control and data flow within the component using pseudo code or a PDL.  Describe when the software unit contains logic, the logic to be used by the software unit, including, as applicable: 1) Conditions in effect within the software unit when its execution is initiated; 2) Conditions under which control is passed to other software units; 3) Response and response time to each input, including data conversion, renaming, and data transfer operations; 4) Exception and error handling 5) Sequence of operations and dynamically controlled sequencing during the software unit's operation, including: 

· The method for sequence control 

· The logic and input conditions of that method, such as timing variations, priority assignments 

· Data transfer in and out of memory 

· The sensing of discrete input signals, and timing relationships between interrupt operations within the software unit 

When the software unit consists of or contains procedural commands a list of the procedural commands and reference to user manuals or other documents that explain them.]
[Data - Define in detail the data internal to components.]
[Space Estimates - Identify space estimates, if applicable.]

[Impact to existing components]

[System Security - Insert the component level approach to meeting safety, security, and privacy requirements

· Network Level - Insert the selected approach to meeting safety, security, and privacy requirements at the network level

· Database Level - Insert the selected approach to meeting safety, security, and privacy requirements at the database level

· Application Level - Insert the selected approach to meeting safety, security, and privacy requirements at the application level]
4. [Notes]

[Insert any general information that aids in understanding this document (e.g., background information, glossary, and rationale). This section shall include a list of any terms and definitions needed to understand this document.]

Appendix A – acronym List

[Insert an alphabetical listing of all acronyms, abbreviations, and their meanings as used in this document.]

	Acronym
	Description

	[????]
	[Insert Project Name acronym]

	[????]
	[Insert Project all other project Software Design Description specific acronyms and resort the table]

	CI
	Configuration Item

	DBA
	Database Administrator

	MS
	Microsoft

	PM
	Project Manager

	RM
	Requirements Manager

	RTM
	Requirements Traceability Matrix

	SCM  
	Software Configuration Management

	SDD
	Software Design Description

	SDLC  
	Software Development Lifecycle

	SDP
	Software Development Plan

	SE
	Software Engineering

	SEPG  
	Software Engineering Process Group

	SPE
	Software Product Engineering

	SM
	Software Manager

	SOP
	Standard Operating Procedure

	SPI
	Software Process Improvement

	SQA
	Software Quality Assurance

	SRS
	Software Requirement Specification

	SW
	Software

	TM
	Test Manager


[Appendix B – Forms and Templates]

[Attach any design forms or templates used on the project.  Use dynamic links; do not paste the forms and template in this file/document.]

[APPENDIX C – DATABASE]
Overview – This section shall describe any changes made to the database/back end.   All changes should be maintained in CCR/Release folders in PVCS.  The entity changes will be updated in ER tool (Erwin/Oracle Designer etc) at the implementation time.  The database changes will be updated in PVCS at the time of implementation.  Examples of database changes include:

· Table

· New Table 

· Purpose:

· Schema:

· Create Script including indexes, constraints and grants, sequences, snapshots:

· Type of Table: normal, index organized, materialized view etc.

· Data expected in 1 year: 

· Data Retention Period:  Will data be archived from time to time?

· Are there data that need to be loaded into the table at the creation time?  What and where are the scripts to load the data?  

· Location of scripts, data etc.

· Modifications to Old Table

· Purpose:

· Schema:

· Modification Script (include changes to the storage clause, indexes, sequences and grants as well):

· Procedure to Modify:  Describe the process to modify the old table; for example if adding a column, simply provide the script to add the column; if modifying the data type of a column, provide the necessary steps like export, drop recreate and import clearly

· Data Modifications:  Will the modified table require modifications to data or require insertions of additional data?  Provide scripts as required.

· Location of scripts, data etc.

· Obsolete Tables:

· Reason the object has become obsolete?

· Schema:

· Should the data be retained for any reason and for how long?  This will help decide whether to store an export file on server or tape.  Regardless of the retention period, the data should be retained online until the Release has been implemented and approved.

· Script to delete table, views build upon the table, synonyms for the table and any referential integrity

· Location of Script:

· Data Modifications

· Purpose:

· Schema:

· Script to add/modify data (include changes to storage clause, indexes and grants as well as necessary statements to disable and enable constraints and triggers before and after the data modifications):

· Step by step process to modify the data:

· Stored Objects (Trigger, Procedure, Package, Function, View)

· Purpose:

· Obsolete/New/Modification Description:

· Will the stored objects change the data retention/growth of any table?  If so, describe the change.

· Location of Scripts:

· Database Links

· Purpose:

· New/Modification/Obsolete:

· If new or modification:  is the database link private/public?   If the database link is public, state the justification.  If a public database link is created, ensure the schema used in the link will not compromise security.

· For modified or obsolete database links, are there any outside users of the link that need to be notified?

· Location of Scripts:

· Init.ora

· Purpose:

· Addition/Modification

· Temporary?  If the addition/modification is temporary, what is the time period?

· Expected Results:  For example, will this addition/modification change the performance?  
· Location of new Init.ora file & distribution:
· Comments:
· Listener.ora
· Purpose:
· Modification:
· Temporary: for example, is the change required to troubleshoot an issue by placing a trace level?
· If adding more listeners or changing ports, are there any users that need to be notified to reference the new ports?
· Location of new Listener.ora file & distribution:
· Tnsnames.ora

· Purpose:

· Addition/Modification/Deletion:

· Location of new tnsnames.ora file:

· Server Batch jobs:

· New

· Purpose:

· Command File:

· Owner:

· Privileges required to execute batch job:

· Schedule:

· Expected length of execution?  Will the new length interfere with other command files/backups?

· Maintenance of log files generated by command file:  will the command file maintain its own log files or is there another command file that maintains all log files on the server?

· Location of command file:

· Modification

· Purpose:

· Modified Command File:

· Schedule change?

· Change in length of execution?  If the execution time increases, will there be any interference to other command files/backups?

· Location of command file:

· Obsolete 

· Purpose:

· Name of Command file and any other scripts called by command file:

· Oracle jobs:

· New

· Purpose:

· Name of sql package/procedure or external script:

· Owner:

· Privileges required to execute job:

· Schedule:

· Expected length of execution?  Will the new length interfere with other jobs backups?

· Maintenance of log files/tables generated by job:  will the job maintain its own log files/tables or is there another job that maintains all log files/log tables in the database?

· Modification

· Purpose:

· Modified sql code:

· Schedule change?

· Change in length of execution?  If the execution time increases, will there be any interference to other jobs/backups?

· Obsolete 

· Purpose:

· Name of job and any other scripts called by the job:

· Arvhive Log File Maintenance:

· Purpose:

· Change in the maintenance schedule or retention period? 

· Is there sufficient space on disk to support the change?

· Storage Maintenance:

· Of all the data modifications, new tables and retention changes for this CCR/Release, consider the availability of resources in the following areas:

· Tablespace:  Does the tablespace have enough space to capture the new data?  

· If datafiles need to be added/resized, are there enough space on the disks?

· Will the generation of redo log files change thus changing the amount of archive log files that are kept on line?  If yes, then is there enough disk space on the server? 

[Appendix D – Other Appendix]

[Appendixes may be used to provide information published separately for convenience in document maintenance (e.g., charts, classified data). As applicable, each appendix shall be referenced in the main body of the document where the data would normally have been provided. Appendixes may be bound as separate documents for ease in handling. Appendixes shall be lettered alphabetically (A, B, etc.).]































caBIG_Sw_Des_Description_Temp.doc

April 2004


